TPOT-RL Applied to Network Routing
نویسنده
چکیده
Team-partitioned, opaque-transition reinforcement learning (TPOT-RL) is a distributed reinforcement learning technique that allows a team of independent agents to learn a collaborative task. TPOT-RL was first successfully applied to simulated robotic soccer (Stone & Veloso, 1999). This paper demonstrates that TPOT-RL is general enough to apply to a completely different domain, namely network packet routing. Empirical results in an abstract network routing simulator indicate that agents situated at individual nodes can learn to efficiently route packets through a network that exhibits changing traffic patterns, based on locally observable sensations.
منابع مشابه
Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure
During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among ...
متن کاملAn Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks
This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...
متن کاملAn Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks
This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...
متن کاملReinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks
Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables ...
متن کاملReinforcement learning for context awareness and intelligence in wireless networks: Review, new features and open issues
In wireless networks, context awareness and intelligence are capabilities that enable each host to observe, learn, and respond to its complex and dynamic operating environment in an efficient manner. These capabilities contrast with traditional approaches where each host adheres to a predefined set of rules, and responds accordingly. In recent years, context awareness and intelligence have gain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000